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Abstract
A unified scheme based on algebraic techniques is proposed to solve the
eigenvalue equation for a class of systems involving spin-like interactions.
From general assumptions Hamiltonian models are built from selected elements
in the enveloping algebra of the harmonic oscillator, su(2) and su(1, 1)

algebras. Our method is next illustrated through examples taken in the areas
of quantum optics and dynamical Jahn–Teller systems in orbital doublets.

PACS numbers: 03.65.Fd, 31.15.Hz, 42.50.Pq, 33.20.Wr

1. Introduction

The determination of exactly solvable models and their physical realizations has been a subject
of constant interest since the very beginning of quantum mechanics. Quite often they can be
used as zeroth-order approximations of more complicated systems and furnish the necessary
ingredients for a perturbative treatment of higher-order interactions. They usually reveal what
has been called hidden symmetries which, besides their own mathematical interest, provide
tools for practical computations.

Among the various methods which have been used to build and treat exactly solvable
models the spectrum generating algebra (SGA) formalism [1–3] and the closely related concept
of non-invariance dynamical group [4–7] appear as the most fruitful, especially in situations
where several degrees of freedom are involved. Various definitions have been given for a SGA
[1, 2, 4, 8] and extensions have been proposed, for instance, with the concept of generalized
Lie algebra [9, 10] in order to generate spectra of nonlinear Hamiltonians. These extensions
also allow one to treat in a unified way several problems which otherwise would not enter the
standard scheme.
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In the spirit of these algebraic methods we consider here a class of systems for which we
assume a ‘dominant’ spin-like (or pseudo-spin) interaction written in the form

O = S+A + S−A†, (1)

where S± = Sx ± iSy, Sz are generators for a spin 1/2 algebra. The A operators will be chosen
in several manners, the main constraint being that from the set S+A, S−A†, [S+A, S−A†] we
should be able to build a spin 1/2 algebra denoted su(2)(P ) in the following. The form
of the A operator determines also some conserved quantities and we can build Hamiltonian
models with the requirement that they can be brought to diagonal form through a unitary
transformation (or rotation) which is an element of the SU(2)(P ) group.

In section 2 the basis of our method is presented. The A operators are taken as
particular elements in the enveloping algebras of the harmonic oscillator algebra h4, su(2)

and su(1, 1). The su(2)(P ) algebras obtained appear, then, as generalizations of the su(2)

algebra introduced [11, 12] for one-mode Jaynes–Cummings models (JCMs). In each case
we determine general expressions of solvable Hamiltonian models. Their eigenvalues are
calculated and their eigenvectors completely determined through a unitary transformation of
SU(2)(P ).

In our applications (section 3) we first indicate briefly how known results for time-
independent one-mode JCMs [13–15] can be recovered. Other examples concerning two-level
systems, which are all treated in a unified way, are more detailed when our method offers a new
solution or extend previous results. This is the case, for instance, for the modified two-mode
JCM [16–18] which is treated in a new way and generalized to a p-mode case. Finally, exact
solutions are obtained for several Jahn–Teller Hamiltonians in orbital doublets.

In the last section and through examples we show that more general A operators may be
introduced which shows the range of potential applications of our method.

2. Construction of su(2)(P ) algebras and Hamiltonian models

In the hermitian operator O (1) we first assume that A is a power in one of the ladder operators
for one of the Lie algebras A = h4, su(2) or su(1, 1). The square of O writes

O2 = {( 1
2 + Sz

)
AA† +

(
1
2 − Sz

)
A†A
}

= { 1
2 (A†A + AA†) + Sz[A,A†]

} = F, (2)

and is a positive operator, function of the invariant I and of the weight generator Az of A and
of the pseudo-spin component Sz. A basis for the space of states H is

|�λ〉∣∣ 12 ± 1
2

〉 ≡ |�λ〉|±〉, (3)

where |�λ〉 is a basis for an irreducible representation (IR) of A and |±〉 eigenstates of Sz and

F |�λ〉|±〉 = f±(�, λ)|�λ〉|±〉. (4)

We have H = Hn ⊕ HF , where Hn is the null-space of F and also that of O. With (2) and
S2

z = 1/4 one obtains the following properties:

[F, S+A] = [F, S−A†] = 0, [S+A, S−A†] = 2SzF . (5)

We may then build the operator algebra acting in HF ,

P+ = 1√
F

S+A, P− = 1√
F

S−A†, Pz = Sz, (6)

which is easily shown to be isomorphic to a su(2) spin 1/2 algebra:

[Pz, P±] = ±P±, [P+, P−] = 2Pz,
1
2 (P+P− + P−P+) + P 2

z = 3/4. (7)
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Table 1. Generators for some spin 1/2 algebras (equation (11)).

Algebra F su(2)(M) F su(2)(N)

h4 a+a + 1
2 + Sz M+ = (F)−1/2S+a a+a + 1

2 − Sz N+ = (F)−1/2S+a+

M− = (F)−1/2S−a+ N− = (F)−1/2S−a

su(2) J 2 − J 2
z M+ = (F)−1/2S+J− J 2 − J 2

z N+ = (F)−1/2S+J+

−2SzJz M− = (F)−1/2S−J+ +2SzJz N− = (F)−1/2S−J−
su(1, 1) −K2 + K2

z M+ = (F)−1/2S+K− −K2 + K2
z N+ = (F)−1/2S+K+

+2SzKz M− = (F)−1/2S−K+ −2SzKz N− = (F)−1/2S−K−

To simplify and since there will be no ambiguities we use the same notation for the F operator
acting in H and its restriction onto HF . Each subspace H�λ × H1/2 of HF is thus split into
two subspaces H+ (H−) with bases |�λ〉|+〉 (|�λ〉|−〉) with the properties

F |�λ〉|±〉 = f±(�, λ)|�λ〉|±〉, f±(�, λ) > 0 P±|�λ〉|±〉 = 0,

P∓|�λ〉|±〉 = |�λ′〉|∓〉, f±(�, λ) = f∓(�, λ′),
(8)

and each nonzero eigenvalue of F is at least doubly degenerate. In the simplest case the A

operator is the ladder operator itself and we have two possibilities:

O = S+X− + S−X+, O = S+X+ + S−X−, (9)

where X− (resp. X+) is the lowering generator (resp. raising generator) of A. For these cases,
we have

F = {( 1
2 + Sz

)
X−X+ +

(
1
2 − Sz

)
X+X−

} = { 1
2 (X+X− + X−X+) + Sz[X−, X+]

}
,

F = {( 1
2 + Sz

)
X+X− +

(
1
2 − Sz

)
X−X+

} = { 1
2 (X+X− + X−X+) − Sz[X−, X+]

}
,

(10)

and we obtain two spin 1/2 algebras

M+ = 1√
F

S+X−, M− = 1√
F

S−X+, Mz = Sz,

N+ = 1√
F

S+X+, N− = 1√
F

S−X−, Nz = Sz.

(11)

The operators M±, N±,F,F are given in table 1 for h4, su(2) and su(1, 1).
The interaction operator O (1) can thus be expressed in terms of a ‘constant of motion’

F and of the su(2)(P ) generators. These results allow first to build a generic hermitian
Hamiltonian model

H = H0 + δS+A + δ∗S−A† + δzSz = H0 +
√
F(δP+ + δ∗P−) + δzPz, (12)

where by H0 we denote an operator which commutes with S+A, S−A† and Sz. This model
can be diagonalized through a standard unitary transformation of SU(2)(P ) [19, 20]. Setting
δ = |δ| exp(iϕ), we obtain

U = exp(ξP+ − ξ †P−), (13)

with

ξ = |ξ | exp(iϕ), tan |ξ | =
(

�(F) − δz/2

�(F) + δz/2

)1/2

, �(F) =
[
F |δ|2 +

δ2
z

4

]1/2

,

(14)
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and

UHU−1 = H̃ = H0 + εzSz = H0 + 2�(F)Sz. (15)

Denoting |�±〉 the degenerate eigenstates of H0 associated with the eigenvalue f of F , we
have

H̃ |�±〉 = [E0 ± �(f )]|�±〉, �(f ) =
[
f |δ|2 +

δ2
z

4

]1/2

, (16)

and the eigenstates of H (12) are |�̃±〉 = U−1|�±〉. With the SU(2) disentangling formula
[19] and the properties of spin 1/2 operators we obtain

|�̃±〉 = U−1|�±〉 = exp[−(ξP+ − ξ †P−)]|�±〉
= exp(k

†
−P+) exp(kzPz) exp(−k−P−)|�±〉

= (I + k
†
−P+) exp(kzPz)(I − k−P−)|�±〉

= (I − k−P−) exp(−kzPz)(I + k
†
−P+)|�±〉, (17)

where the last two forms are useful to obtain explicitly the states |�̃±〉 and with

kz = ln

[
2�(F)

�(F) + δz/2

]
, k− = − (�(F) − δz/2)

δ
√
F

= −exp(−iϕ)

(
�(F) − δz/2

�(F) + δz/2

)1/2

.

(18)

The states (17) can also be written as

|�̃+〉 = cos[θ(F)]|�+〉 + exp(−iϕ) sin[θ(F)]|�−〉,
(19)

|�̃−〉 = cos[θ(F)]|�−〉 − exp(iϕ) sin[θ(F)]|�+〉,
with

cos[θ(F)] =
[
�(F) + δz/2

2�(F)

]1/2

, sin[θ(F)] =
[
�(F) − δz/2

2�(F)

]1/2

. (20)

We note that, in the special case δz = 0, the preceding relations are valid and U−1 takes the
simple form

U−1 = exp
[
−π

4
(eiϕP+ − e−iϕP−)

]
= exp(−eiϕP+) exp[ln(2)Pz] exp(e−iϕP−), (21)

with �(F) = √
F |δ| and cos[θ(F)] = sin[θ(F)] = 1/

√
2.

More elaborate models are obtained specifying A operators and considering various
possible forms for H0. Basically we have two main cases according as A in (1) is a power in
the lowering or raising operator of A (p ∈ N, p > 0):

Case (i) Case (ii)
A = ρ(N)ap A = a+pρ(N) h4

A = ρ(Jz)J
p
− A = J

p
+ ρ(Jz) su(2)

A = ρ(Kz)K
p
− A = K

p
+ ρ(Kz) su(1, 1)

(22)

where ρ(x) is an entire function of x which, for simplicity, we take as real. Here and in the
following, additional dependences of operators upon the invariant I of A are implied.

We note that, in the h4 case, our choice for the A operators contains the generalized Bose
operators defined by Brandt et al [21] and further extended in [22] (for a review, see [23]
and references therein); however, we do not impose the constraint [A,A†] = I . Also several
deformation schemes of these classical algebras discussed in the literature [24–26] may be
included.
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For case (i), we have, with equation (6),

[Az + pSz, P±] = 0, [Az + pSz, Pz] = 0, (23)

and of course [Az,F] = 0 with F given by (2). Setting � = Az +pSz (or � = Az±p/2+pSz)
we can thus consider Hamiltonian expansions of the form

H = H0 + H ′
0(�) + H ′′

0 (Az) + δS+A + δ∗S−A† + γz(Az)Sz

= H0 + H ′
0(�) + H ′′

0 (Az) +
√
F(δP+ + δ∗P−) + γz(Az)Pz. (24)

In fact, in all three cases, it may be shown that for any expandable function � and with
� = Az + p

(
1
2 + Sz

)
we have

�(�) = ( 1
2 − Sz

)
�(Az) +

(
1
2 + Sz

)
�(Az + p),

�(Az) = ( 1
2 − Sz

)
�(�) +

(
1
2 + Sz

)
�(� − p),

(25)

with similar expressions for other choices of �. This allows us to rewrite (24) more simply in
terms of the conserved quantities � and F :

H = H0 + H ′(�) +
√
F(δP+ + δ∗P−) + δz(�)Pz. (26)

From equations (2), (22) the F operators are given by:

• For the oscillator algebra

F = ( 1
2 + Sz

)
ρ(N)apa+pρ(N) +

(
1
2 − Sz

)
a+pρ2(N)ap

= ( 1
2 + Sz

)
ρ2(N)(N + p)p +

(
1
2 − Sz

)
ρ2(N − p)Np, (27)

with Np = N(N − 1) · · · (N − p + 1), N0 = 1. With |n〉 denoting the usual Fock states
the degenerate eigenstates (8) are |n〉|+〉, |n + p〉|−〉 associated with the eigenvalues

f (n) = ρ2(n)(n + p)p = ρ2(n)
(n + p)!

n!
, ρ(n) 	= 0, (28)

of F and κ = n + p of � = a+a + p(1/2 + Sz).
• For su(2)

F =
(

1

2
+ Sz

)
ρ(Jz)J

p
−J

p
+ ρ(Jz) +

(
1

2
− Sz

)
J

p
+ ρ2(Jz)J

p
−

=
(

1

2
+ Sz

)
ρ2(Jz)

p−1∏
u=0

{J 2 − (Jz + u + 1)(Jz + u)}

+

(
1

2
− Sz

)
ρ2(Jz − p)

p−1∏
u=0

{J 2 − (Jz − u)(Jz − u − 1)}. (29)

A basis for the unitary IRs of su(2) is given by the standard su(2) ⊃ so(2) basis
{|jm〉} corresponding to the eigenvalues j (j + 1) of the Casimir operator J 2 =
(J+J− + J−J+)/2 + J 2

z and m of Jz. With p � 2j , the degenerate eigenstates
|jm〉|+〉, |jm + p〉|−〉 (j − m � p) are associated with the eigenvalues κ = m + p

of � = Jz + p(1/2 + Sz) and f (j,m) of F :

f (j,m) = ρ2(m)
(j − m)!(j + m + p)!

(j + m)!(j − m − p)!
, ρ(m) 	= 0. (30)
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• For su(1, 1)

F =
(

1

2
+ Sz

)
ρ(Kz)K

p
−K

p
+ ρ(Kz) +

(
1

2
− Sz

)
K

p
+ ρ2(Kz)K

p
−

=
(

1

2
+ Sz

)
ρ2(Kz)

p−1∏
u=0

{(Kz + u)(Kz + u + 1) − K2}

+

(
1

2
− Sz

)
ρ2(Kz − p)

p−1∏
u=0

{(Kz − u)(Kz − u − 1) − K2}. (31)

For this algebra, we consider only the positive discrete series IRs D+(k) [1] for which the
Casimir operator K2 = K2

z − (K+K− + K−K+)/2 together with the compact generator Kz are
diagonal:

K2|km〉 = k(k − 1)|km〉 k > 0, Kz|km〉 = (k + m)|km〉 m = 0, 1, . . . ,∞.

The degenerate eigenstates (8) are |km〉|+〉, |km + p〉|−〉 associated with the eigenvalues
κ = m + k + p of � = Kz + p(1/2 + Sz) and f (k,m) of F :

f (k,m) = ρ2(m + k)
(m + p)!�(m + 2k + p)

(m)!�(m + 2k)
, ρ(m + k) 	= 0. (32)

In each case the subspace Hn is determined by the zero eigenvalues of F and is also associated
with uncoupled states by the interaction term δS+A + δ∗S−A† in the Hamiltonian (24). We
thus have the states |�λ〉|±〉 for which

ρ(Az)|�λ〉|±〉 = 0,

and for h4 the states |n〉|−〉 with n : 0, 1, . . . , p − 1. For su(2), besides those states for
which p > 2j we find |jm〉|+〉 with m = j − p + 1, j − p + 2, . . . , j and |jm〉|−〉 with
m = −j,−j + 1, . . . ,−j + p − 1. For su(1, 1), as for h4, there is no upper bound on the m
value so the uncoupled states are |km〉|−〉 with m = 0, 1, . . . , p − 1.

For case (ii), we have, with equations (6), (22),

[Az − pSz, P±] = 0, [Az − pSz, Pz] = 0, (33)

and still [Az,F] = 0 with F given by (2). Setting � = Az − pSz (or � = Az ± p/2 − pSz),
we can consider Hamiltonian expansions of the form

H = H0 + H ′
0(�) + H ′′

0 (Az) + δS+A + δ∗S−A† + γz(Az)Sz

= H0 + +H ′
0(�) + H ′′

0 (Az) +
√
F(δP+ + δ∗P−) + γz(Az)Pz. (34)

Choosing � = Az + p
(

1
2 − Sz

)
equation (25) keeps the same form with the substitutions

� → � and the interchange 1/2 − Sz ↔ 1/2 + Sz. Then we also have for (34)

H = H0 + H ′(�) +
√
F(δP+ + δ∗P−) + δz(�)Pz. (35)

The operators F are determined from equations (2), (22) or directly from those of case (i) with
the interchange 1/2 −Sz ↔ 1/2 + Sz in equations (27), (29), (31). The degenerate eigenstates
are obtained from those of case (i) with the interchange |+〉 ↔ |−〉, the eigenvalues κ̄ of �

and f̄ of F being identical to those κ of � and f of F (equations (28), (30), (32)). The same
rule holds for the uncoupled states discussed before.

The form of the Hamiltonians (26), (35) allows us to obtain their eigenspectrum with a
straightforward adaptation of the results in equations (12)–(20):

UHU−1 = H̃ = H0 + H ′(�) + εzSz = H0 + H ′(�) + 2�(F,�)Sz, (36)
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with

�(F,�) =
[
F |δ|2 +

δ2
z (�)

4

]1/2

, (37)

and eigenvalues determined by

H̃ |�±〉 = [E0 + E′(κ) ± �(f, κ)]|�±〉. (38)

Equations (13),(14) and (17)–(20) keep the same form with the substitutions �(F) →
�(F,�), δz → δz(�) and θ(F) → θ(F,�). Alternatively we can take θ(F,�) ≡ θ(f, κ)

in equation (19). We note that, taking into account the relation

2Sz = ( 1
2 + Sz

)− ( 1
2 − Sz

) = S+S− − S−S+,

and the expressions (2) for F and (25) for δz(�), the last term in (36) may be written as

εzSz = �+S+S− − �−S−S+, (39)

where �± may be seen as ‘generalized flipping operators’ [15, 27],

�± =
[
F±|δ|2 +

δ2
z±(Az)

4

]1/2

, (40)

with

F+ = AA†, F− = A†A, δz+(Az) = δz(Az + p), δz−(Az) = δz(Az). (41)

Relations (36)–(41) have been detailed for case (i); the corresponding equations for case (ii)
are obtained with the substitutions F → F , � → � and equation (41) replaced by

F+ = AA†, F− = A†A, δ̄z+(Az) = δz(Az), δ̄z−(Az) = δz(Az + p). (42)

We show in the following section that our approach allows us to gather in a unified formalism
various problems in quantum optics and molecular spectroscopy.

3. Applications

3.1. Single-mode JCMs

In the area of quantum optics the interaction between a two-level atom and a quantized single-
mode electromagnetic field is described by the JCM [13–15]. Since its original formulation
various generalizations and extensions have been proposed leading, for instance, to what is
referred to as the nonlinear time-independent two-level multiphoton JCM including intensity-
dependent coupling [28]. These have been studied by numerous authors from many different
points of view. The relevance of the su(2) algebra for these two-level models has already
been recognized [11, 12, 27] and extended to su(N) in some N-level cases [29]. Also using
deformations of the oscillator algebra a unified description of one-mode JC Hamiltonians has
been given [10, 30, 31]. Supersymmetric extensions and there deformed versions have also
been explored [30, 32].

We just briefly sketch below how our Hamiltonian model (26) can be specialized to include
all standard one-mode JCM and how our method gives a simple operator form for the unitary
transformation to the eigenbasis. The standard one-mode multiphoton JCM may be written

HJC/h̄ = ωa+a + ω0Sz + ρ0(a
+a) + Hint, (43)

where the bosonic operators a, a+ are associated with the radiation field with frequency ω;
the pseudo-spin operators σ± = 2S± , σz = 2Sz represent the two atomic levels separated by
an energy gap of h̄ω0. ρ0(a

+a) may be associated with the nonlinear effects of a Kerr-like
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medium [33, 34] usually written in the form χa+2a2. The atom–field interaction term Hint in
the multiphoton case and within the rotating wave approximation may be taken as

Hint/h̄ = gρ(N)apS+ + g∗a+pρ(N)S−, (44)

where ρ(N) is a real analytic function of the photon number operator N = a+a.
The correlation with the results established in section 2 is straightforward with F as given

by (27), � = a+a + p(1/2 + Sz) and (equation (26)):

H0 = 0, H ′(�) = ω
(
� − p

2

)
+ [ρ0(�) + ρ0(� − p)]/2,

δz(�) = [ω0 − pω + ρ0(� − p) − ρ0(�)], δ = g.

This allows equations (36)–(38) to be used directly which gives, in particular, the energies

EJC± = h̄

{
ω
(
κ − p

2

)
+

1

2
[ρ0(κ) + ρ0(κ − p)] ± �(f, κ)

}
,

�(f, κ) =
[
f |g|2 +

δ2
z (κ)

4

]1/2

,

(45)

with κ = n + p and f as given by (28). Equations (17), (18) with �(F) → �(F,�) and
δz → δz(�) determine the unitary dressing operator U−1 from which the dressed states of
HJC may also be written in the form (equations (19), (20))

|�̃+〉 =
[
�(f ) + δz(κ)/2

2�(f )

]1/2 {
|n〉|+〉 +

[
�(f ) − δz(κ)/2

g
√

f

]
|n + p〉|−〉

}
= cos[θ(f, κ)]|n〉|+〉 + e−iϕ sin[θ(f, κ)]|n + p〉|−〉,

|�̃−〉 =
[
�(f ) + δz(κ)/2

2�(f )

]1/2 {
|n + p〉|−〉 −

[
�(f ) − δz(κ)/2

g∗√f

]
|n〉|+〉

}
= cos[θ(f, κ)]|n + p〉|−〉 − eiϕ sin[θ(f, κ)]|n〉|+〉, (46)

with g = |g| eiϕ . The null dressed states are |n〉|−〉, n = 0, 1, . . . , p − 1, with energies
EJC0− = h̄(ωn − ω0/2 + ρ0(n)). We note that, within the rotating wave approximation,
only case (i) is relevant; more precisely, (ii) would correspond to a diagonalization of the
counter-rotating terms. Several special cases can be underlined.

• For p = 1, ρ0(N) = 0 and ρ(N) = I then F = � and we recover the original JCM [13].
• p = 1 and ρ(N) = (2s + N)1/2 in (44) give the intensity-dependent coupling model

[35, 36] associated with the usual Holstein–Primakoff realization of su(1, 1) [37, 38] and
we can use equations (31), (32) with ρ(Kz) = I and the correspondence between states:

|n〉|+〉 → |k = s m = n〉|+〉, |n + 1〉|−〉 → |k = s m + 1 = n + 1〉|−〉.
• The p = 2 case [39–41] can be equivalently treated with the one-mode realization of

su(1, 1)

K+ = a+2/2, K− = a2/2, Kz = (a+a + 1/2)/2,

with p = 1 in equations (31), (32) and the correspondence between basis states

|n〉|+〉 → |km〉|+〉, |n + 2〉|−〉 → |km + 1〉|−〉,
with Bargmann index k = 1

4 for n = 2m and k = 3
4 for n = 2m + 1.

• As noted before, several multiphoton models of the one-mode JC type could be built
starting from the generalized p-photon operators [21, 22], their deformed versions
[24, 25] and the generalized Holstein–Primakoff realizations of su(2) and su(1, 1) [42].
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3.2. Multimode nonlinear JCMs

We consider below some problems in cavity quantum electrodynamics (QED) [43]. These are
multiphoton two-mode models, of which only special cases have been treated in the literature.
Next the three-mode nonlinear Raman coupled model and the modified two modes JCM are
given a complete and simple solution, the latter being extended to a p-mode case. Finally, we
show that several dynamical Jahn–Teller systems may be solved within the same formalism.
We give in each case the effective Hamiltonian in a form which allows results in section 2 to
be used and solve the eigenvalue equation.

3.2.1. Multiphoton two-mode models. Within our approach we can consider the following
effective Hamiltonians for two-level systems involving multiphoton processes:

H/h̄ = ω0Sz + ω1a
+
1 a1 + ω2a

+
2 a2 + β1S−S+ρ1

(
a+

1 a1
)

+ β2S+S−ρ2(a
+
2 a2) + Hint/h̄,

Hint/h̄ =
{[

gρ
(
a+

1 a1, a
+
2 a2
)
a

+p

2 a
p

1 S+ + g∗a+p

1 a
p

2 ρ
(
a+

1 a1, a
+
2 a2
)
S−
]

case (a)[
gρ
(
a+

1 a1, a
+
2 a2
)
a

p

1 a
p

2 S+ + g∗a+p

1 a
+p

2 ρ
(
a+

1 a1, a
+
2 a2
)
S−
]

case (b),

(47)

to which we could add an operator-valued function ρ0
(
a+

1 a1, a
+
2 a2
)
. Case (a) may be associated

with a two-mode Raman coupled model with possible 2p-photon transitions [44]. Case (b),
usually treated with p = 1 [45–47], may be seen as a QED model in which a two-level
atom interacts with two field modes via a non-degenerate 2p-photon process. In both cases,
the fourth and fifth terms describe intensity-dependent Stark shifts commonly taken with
ρi

(
a+

i ai

) = a+
i ai = Ni . The interaction term involves powers in the ladder operators for su(2)

(resp. su(1, 1)) in its Schwinger [1] (resp. two-mode [48]) realization:

su(2) J+ = a+
1 a2 J− = a+

2 a1 Jz = 1
2 (N1 − N2),

su(1, 1) K+ = a+
1 a+

2 K− = a1a2 Kz = 1
2 (N1 + N2 + 1),

(48)

with Casimir invariants, respectively, given by

J 2 = [(N1 + N2)/2][(N1 + N2)/2 + 1)] = (N/2)(N/2 + 1),

K2 = [(N1 − N2 + 1)/2][(N1 − N2 − 1)/2] = S(S − 1).
(49)

We can thus introduce the conserved quantities

case (a) case (b)

� Jz + p
(

1
2 + Sz

)
Kz + p

(
1
2 + Sz

)
,

I N = N1 + N2 S = 1
2 (N1 − N2 + 1),

(50)

which, together with F ((29), (31)) and (25), allow us to rewrite (47) in the form (26).

Case (a). For this Raman-type model, N = N1 + N2 represents the photon total number
operator in the pump and Stokes fields with frequency ω1 and ω2, respectively, and
Jz = (N1 − N2)/2 the photon difference number operator between the two fields. The
latter can thus be seen as a field angular momentum as for doubly degenerate vibrational
modes [49, 50]. The field Fock states can be labelled with the quantum numbers associated
with the subduction u(2) ⊃ su(2) ⊃ so(2) or with the usual eigenvalues of the photon number
operators:

|[n0]jm〉 ≡ |n1, n2〉, j = n

2
= n1 + n2

2
, m = n1 − n2

2
. (51)
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With F given from equation (29) by

F = ( 1
2 + Sz

)
ρ2(N/2 + Jz,N/2 − Jz)(N/2 + Jz + p)p(N/2 − Jz)

p

+
(

1
2 − Sz

)
ρ2(N/2 + Jz − p,N/2 − Jz + p)(N/2 + Jz)

p(N/2 − Jz + p)p

= ( 1
2 + Sz

)
ρ2(N1, N2)(N1 + p)pN

p

2 +
(

1
2 − Sz

)
ρ2(N1 − p,N2 + p)N

p

1 (N2 + p)p,

(52)

we obtain equation (26) with

H0 = (ω1 + ω2)(N1 + N2)/2,

H ′(�) =
[

(ω1 − ω2)
(
� − p

2

)
+

β1

2
ρ1

(
N

2
+ �

)
+

β2

2
ρ2

(
N

2
− � + p

)
,

δz(�) = ω0 − p(ω1 − ω2) − β1ρ1

(
N

2
+ �

)
+ β2ρ2

(
N

2
− � + p

)
, δ = g.

(53)

The energies, together with the off-resonance Rabi operator, are determined from equations
(30), (37), (38):

Ejm± = h̄

{
(ω1 + ω2)j + (ω1 − ω2)

(
m +

p

2

)
+

β1

2
ρ1(j + m + p) +

β2

2
ρ2(j − m)

±
[
|g|2ρ2(j + m, j − m)

(j − m)!(j + m + p)!

(j + m)!(j − m − p)!
+ δ2

z (m + p)/4

]1/2 }
, (54)

δz(m + p) = ω0 − p(ω1 − ω2) − β1ρ1(j + m + p) + β2ρ2(j − m),

which can alternatively be expressed in terms of the photon numbers n1, n2. With equations
(17)–(20) various expressions for the eigenstates may be obtained from the initially degenerate
states �+ = |jm〉|+〉 and �− = |jm + p〉|−〉,−j � m � j − p (j � p/2). The uncoupled
states are |jm〉|+〉 (j − p < m � j) and |jm〉|−〉 (−j � m < −j + p) with energies,
respectively, given by

E+ = h̄
[
(ω1 + ω2)j + (ω1 − ω2)m +

ω0

2
+ β2ρ2(j − m)

]
,

E− = h̄
[
(ω1 + ω2)j + (ω1 − ω2)m − ω0

2
+ β1ρ1(j + m)

]
.

The usual version for this model [44], with or without Stark shifts, is recovered with p = 1
and ρ(N1, N2) = I in the preceding equations.

Case (b). Similarly with (25), (50) we can write the effective Hamiltonian (47) in the form of
equation (26) with

H0 = (ω1 − ω2)(S − 1/2),

H ′(�) = (ω1 + ω2)

(
� − p + 1

2

)
+

β1

2
ρ1(S − 1 + �) +

β2

2
ρ2(−S + � − p),

δz(�) = ω0 − p(ω1 + ω2) − β1ρ1(S − 1 + �) + β2ρ2(−S + � − p), δ = g,

(55)

and with F given from equation (29) by

F = ( 1
2 + Sz

)
ρ2(S − 1 + Kz,−S + Kz)(S − 1 + Kz + p)p(−S + Kz + p)p

+
(

1
2 − Sz

)
ρ2(S − 1 + Kz − p,−S + Kz − p)(S − 1 + Kz)

p(−S + Kz)
p,

= ( 1
2 + Sz

)
ρ2(N1, N2)(N1 + p)p(N2 + p)p +

(
1
2 − Sz

)
ρ2(N1 − p,N2 − p)N

p

1 N
p

2 .

(56)
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With equation (37) this determines the 2p-photon Rabi operator �(F,�). The field Fock
states |n1, n2〉 = |n1〉 ⊗ |n2〉 span two equivalent IRs of su(1, 1) with bases

|km〉1 ≡ |n1, n2〉, n1 = m + 2k − 1, n2 = m,

|km〉2 ≡ |n1, n2〉, n1 = m, n2 = m + 2k − 1,
(57)

except for n1 = n2 = n, in which case
∣∣ 1

2m = n
〉
1 ≡ ∣∣ 12m = n

〉
2 ≡ |n1 = n, n2 = n〉. The

undressed states are |�+〉 = |n1, n2〉|+〉 and |�−〉 = |n1 + p, n2 + p〉|−〉. The eigenvalues are
obtained with equations (37), (38) with

f (n1, n2) = ρ2(n1, n2)
(n1 + p)!(n2 + p)!

n1!n2!
,

δz(n1, n2) = ω0 − p(ω1 + ω2) − β1ρ1(n1 + p) + β2ρ2(n2),

(58)

En1n2± = h̄

{
(ω1 − ω2)(n1 − n2)/2 + (ω1 + ω2)(n1 + n2 + p)/2 +

β1

2
ρ1(n1 + p)

+
β2

2
ρ2(n2) ±

{
|g|2ρ2(n1, n2)

(n1 + p)!(n2 + p)!

n1!n2!
+ δ2

z (n1, n2)/4

}1/2}
, (59)

and may also be expressed in terms of the quantum numbers k,m with (57). It seems to us that
some results in [47] should be corrected. With equations (17)–(20) the eigenstates are obtained
using the expressions of δz(�) and F given above. The uncoupled states are |n1, n2〉|−〉,
n1 < p or n2 < p, with energies given by En1n2− = h̄[ω1n1 + ω2n2 + β1ρ1(n1) − ω0/2].

We used in (47) the standard two-mode realizations of su(2) and su(1, 1). More generally
our approach applies to Hamiltonian models:

H/h̄ = H0(R
2, Rz) + γz(R

2, Rz)Sz + gρ(R2, Rz)R
p
−S+ + g∗Rp

+ ρ(R2, Rz)S−,

or

H/h̄ = H0(R
2, Rz) + γz(R

2, Rz)Sz + gR
p
+ ρ(R2, Rz)S+ + g∗ρ(R2, Rz)R

p
−S−,

for other multi-mode realizations of the R = J or K generators [51–53].

3.2.2. Three-mode nonlinear Raman coupled model. For this Raman model originally
proposed in [54], the eigenvalues have been obtained in [55] and it has been recently treated
through supersymmetric quantum mechanics [56]. We show below that our formalism gives
a complete solution even when the Stark shift and frequency detuning are taken into account.
The effective Hamiltonian for this QED model is [55]

H/h̄ = ω1(N1 + N2 + N3) + E+−
(
a+

3 a3 − a+
2 a2 + Sz

)
+
[
g
(
a+

3 a3 − a+
2 a2
)

+ δ
]
(1/2 − Sz) + Hint/h̄,

Hint/h̄ = g
[(

a+
2 a1 + a+

1 a3
)
S+ +
(
a+

1 a2 + a+
3 a1
)
S−
]
, (60)

where the indices i = 1, 2, 3 refer to the pump, Stokes and anti-Stokes field modes,
respectively. The third term contains the Stark shift g

(
a+

3 a3 − a+
2 a2
)
(1/2 − Sz) and frequency

detuning δ(1/2 − Sz). Written in the form (60) H appears as a function of the generators of an
u(3) algebra with linear invariant N = N1 + N2 + N3 associated with the photon total number
operator. Among the possible su(3) subalgebras there is so(3) introduced by Wang et al [54],
which allows us to associate a pseudo-angular momentum �L with the field modes:

L+ =
√

2
(
a+

1 a2 + a+
3 a1
)
, L− =

√
2
(
a+

2 a1 + a+
1 a3
)
, Lz = a+

3 a3 − a+
2 a2. (61)

The well-known properties of the chain u(3) ⊃ su(3) ⊃ so(3) ⊃ so(2) in its three-boson
realization [1], not used in [55], together with the isomorphism so(3) ≈ su(2) allow us to use
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our previous results. In particular, the field states are characterized by three quantum numbers
n, �,m associated with the IRs of each element in the chain

su(3) ⊃ so(3) ⊃ so(2)

[n0̇2] � m

with � = n, n − 2, . . . , 1 or 0,m = −�,−� + 1, . . . , � − 1, � just as for the usual three-
dimensional isotropic harmonic oscillator.

With � = Lz + (1/2 + Sz) we can rewrite (60) as an ‘su(2) model’ with p = 1 (equation
(26), table 1):

H/h̄ = ω1N − (E+− − δ)/2 + (E+− + g/2)� − (g� + δ)Sz + (g/
√

2)(L−S+ + L+S−), (62)

from which H̃ /h̄ is obtained in the form (36) with

δz(�) = −(g� + δ), F = L2 − L2
z − 2LzSz,

�(F,�) = 1
2 {2g2F + (g� + δ)2}1/2, (63)

and with eigenvalues (equations (30), (38))

En�m± = h̄

{
ω1n − 1

2
(E+− − δ) +

(
E+− +

g

2

)
(m + 1)

± 1

2
{2g2(� − m)(� + m + 1) + [g(m + 1) + δ]2}1/2

}
. (64)

As before, with equations (17)–(20) and (63) various expressions for the eigenstates
may be obtained from the initially degenerates states |�+〉 = |[n0̇2]�m〉|+〉 and |�−〉 =
|[n0̇2]�m+ 1〉|−〉,−� � m � �−1. The uncoupled atom–field states are |�+〉 = |[n0̇2]��〉|+〉
and |�−〉 = |[n0̇2]� − �〉|−〉 with energies E+ = h̄[ω1n + E+−(� + 1/2)] and E− =
h̄[ω1n−E+−(� + 1/2)−g� + δ], respectively. We note that a more convenient expression than
those in [55, 56] for the field states in terms of the Fock states |n1, n2, n3〉 is given by [57, 58]

|[n0̇2]�m〉 = N (n, �,m)
(
a+2

1 − 2a+
2 a+

3

)(n−�)/2∑
x

a+�+m−2x
1 a+x−m

2 a+x
3

2xx!(x − m)!(� + m − 2x)!
|0, 0, 0〉, (65)

with

N (n, �,m) =
[

2�+m
(

n+�
2

)
!(� − m)!(� + m)!(2� + 1)(
n−�

2

)
!(n + � + 1)!

]1/2

. (66)

3.3. The modified two-mode JCM

Among the extensions of JCMs, the modified two-mode JCM describes a two-level atom
placed in the common domain of two cavities with equal frequencies [16]. Several techniques
have been proposed for its resolution: polynomial expansions [16], algebraic methods [17]
and lately via the superalgebra osp(2, 1) [18]. We show below how our formalism gives a
simple and compact solution which allows also the extension of the model to an arbitrary
number of modes. The Hamiltonian may be written as

H/h̄ = ω
(
a+

1 a1 + a+
2 a2
)

+ ω0Sz +
(
δ1a1S+ + δ∗

1a
+
1 S−
)

+
(
δ2a2S+ + δ∗

2a
+
2 S−
)

= ω
(
a+

1 a1 + a+
2 a2
)

+ ω0Sz + (δ1a1 + δ2a2)S+ +
(
δ∗

1a
+
1 + δ∗

2a
+
2

)
S−, (67)

in which we allow for complex coupling constants. Setting δk = |δk| eiϕk k = 1, 2 we introduce
the unitary transformation U1 of the annihilation operators ai (i = 1, 2)

b1 = (|δ1|2 + |δ2|2)−1/2(|δ1|a1 + δ2 e−iϕ1a2),

b2 = (|δ1|2 + |δ2|2)−1/2(−δ∗
2 eiϕ1a1 + |δ1|a2),

(68)
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and similar expressions for the b+
i (i = 1, 2) obtained through hermitian conjugation

from (68). The commutation relations of the elementary boson operators being preserved
the set b+

i bj (i, j = 1, 2) span a u(2) algebra equivalent to that spanned by the a+
i aj . In terms

of the new boson operators it is easily checked that we have

H/h̄ = ω
(
b+

1b1 + b+
2b2
)

+ ω0Sz + (|δ1|2 + |δ2|2)1/2
(
eiϕ1b1S+ + e−iϕ1b+

1S−
)

= ωb+
2b2 + ωb+

1b1 + ω0Sz +
(
δ′

1b1S+ + δ′∗
1 b+

1S−
)
, (69)

which is the sum of two uncoupled Hamiltonians—one associated with a one-dimensional
harmonic oscillator and the other with a one-photon JCM. With the results of section 3.1 a
second unitary transformation leads to

U2(H/h̄)U−1
2 = H̃ /h̄ = ωb+

2b2 + ω
(
� − 1

2

)
+ 2�(�)Sz, (70)

where

� = F = b+
1b1 + 1/2 + Sz, �(�) =

[
(|δ1|2 + |δ2|2)� +

(ω0 − ω)2

4

]1/2

.

In the basis ̂|n1, n2〉|+〉, | ̂n1 + 1, n2〉|−〉, where ̂|n1, n2〉 is the eigenbasis of the new number
operators Ni = b+

i bi , we thus obtain the eigenvalues of (70) and (67):

E(n1, n2,±) = h̄ωn2 + h̄ω

(
n1 +

1

2

)
± h̄

[
(|δ1|2 + |δ2|2)(n1 + 1) +

(ω0 − ω)2

4

]1/2

. (71)

With the results in the appendix the states ̂|n1, n2〉 may be written in several forms:

̂|n1, n2〉 = U1|n1, n2〉 = (n1!n2!)−1/2b
+n1
1 b

+n2
2 |0, 0〉

≡ |ĵm〉 = U1|jm〉 = exp[ξJ− − ξ ∗J+]|jm〉, (72)

with j and m as defined in equation (51) and

ξ = |ξ | ei(ϕ1−ϕ2), tan |ξ | = |δ2|/|δ1|. (73)

The second form in (72) shows more clearly the su(2) symmetry; the corresponding Euler–
Rodrigues parameters are (3)

λ = cos
ϕ

2
= |δ1|

(|δ1|2 + |δ2|2)1/2
,

�� = sin
ϕ

2
�n = |δ2|

(|δ1|2 + |δ2|2)1/2
(sin(ϕ1 − ϕ2),− cos(ϕ1 − ϕ2), 0).

(74)

The energies (71) can alternatively be expressed in terms of the quantum numbers associated
with the total photon number n = n1 + n2 and n1 or j = n/2 and m.

The dressed states of H (67) are given by

|�̃±〉 = U−1
2 |ĵm〉|±〉 = U−1

2 U1|jm〉|±〉, (75)

where the U−1
2 transformation is that of equations (17), (18) with

k− = − 1

δ′
1

√
�

[�(�) − (ω0 − ω)/2], kz = ln

[
2�(�)

�(�) + (ω0 − ω)/2

]
.

Alternatively they may be taken in the form of equation (46) with the substitutions

�(f ) → �(n1 + 1), δz(κ) → (ω0 − ω),

|n〉|+〉 → ̂|n1, n2〉|+〉, |n + p〉|−〉 → ̂|n1 + 1, n2〉|−〉.
These relations together with equations (68), (72)–(74) allow us to obtain compact expressions
for the eigenstates in terms of the initial basis |n1, n2〉 associated with modes 1 and 2. Our
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results are in agreement with those obtained in [17]. Our introduction of a first transformation
U1 acting on the field modes alone simplifies notably the expressions of the eigenstates. In
particular, we point out the case of the null dressed states |̂0, n2〉|−〉, which are eigenstates
of H, as shown by (69), with energies En2 = h̄(ωn2 − ω0/2). With equations (72), (73) one
shows that they involve standard su(2) coherent states [59]:

|̂0, n2〉|−〉 = ̂|j − j 〉|−〉 =
[

1 +
|δ2|2
|δ1|2
]−j

exp

[
−δ2

δ1
J+

]
|j − j 〉|−〉, j = n2

2
.

Alternatively with (68), (72) a very simple expression is obtained in terms of the initial Fock
states with q and n2 − q photons in modes 1 and 2, respectively:

|̂0, n2〉|−〉 =
[ |δ1|
(|δ1|2 + |δ2|2)1/2

]n2 n2∑
q=0

(−1)q(δ2/δ1)
q

(
n2

q

)1/2

|qn2 − q〉|−〉.

Our method also suggests a generalization to an arbitrary number of modes which we briefly
sketch. We consider the extension of (67) to a p-mode case

H/h̄ = ω

p∑
i=1

a+
i ai + ω0Sz +

p∑
i=1

(
δiaiS+ + δ∗

i a
+
i S−
)

= ω

p∑
i=1

a+
i ai + ω0Sz +

(
p∑

i=1

δiai

)
S+ +

(
p∑

i=1

δ∗
i a

+
i

)
S−, (76)

the first term of which involves the linear invariant N =∑p

i=1 a+
i ai of a u(p) algebra preserved

under any p × p unitary transformation

bi =
p∑

j=1

U
j

i aj , b+
i =

p∑
j=1

U
j∗
i a+

j .

One may always choose U such that

b1 = N−1/2

[
|δ1|a1 +

p∑
i=2

δi e−iϕ1ai

]
, N =

p∑
i=1

|δi |2,

b+
1 = N−1/2

[
|δ1|a+

1 +
p∑

i=2

δ∗
i eiϕ1a+

i

]
,

and the Hamiltonian (76) is written in terms of the new field mode operators

H/h̄ = ω

p∑
i=1

b+
i bi + ω0Sz + N 1/2

(
eiϕ1b1S+ + e−iϕ1b+

1S−
)

= ω

p∑
i=2

b+
i bi + ωb+

1b1 + ω0Sz +
(
δ′

1b1S+ + δ′∗
1 b+

1S−
)
, (77)

which is of the same form as (69) but with an uncoupled isotropic harmonic oscillator with
dimension p − 1 instead of 1. The second step in the diagonalization procedure is then
identical to that discussed previously. We note that the arbitrariness which remains for the
determination of the U transformation can be raised with the choice of a canonical symmetry
adaptation [60] for the generators b+

i bj (i, j = 2, . . . , p) spanning a u(p − 1) algebra.
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3.4. E ⊗ ε Jahn–Teller systems

Several problems in molecular spectroscopy [3, 50, 61] involve an u(2) algebra in its Schwinger
realization. According to the case, the bosonic variables are associated with different degrees
of freedom. For instance, a uv(2) vibrational algebra is useful for the treatment of doubly
degenerate vibrational modes [49]. Also orbital doublets may be described in terms of an
electronic ue(2) algebra [50, 62, 63] which is that of a spin 1/2; in this case, the pseudo-spin
components Sα = σα/2 are symmetry adapted electronic operators.

With the results of section 2 we could take a Hamiltonian model in one of the general
forms (26) or (35) with realizations of S+A and F (or F) as given in (22) and (29). It would
lead to, in particular, a whole class of ‘su(2) JCMs’. Although solvable these are not quite
realistic for our purpose since zeroth-order approximations in vibronic spectroscopy usually
involve low powers in the elementary operators and it is sufficient to consider cases when the
power p in A is one and ρ(Jz) = I in (22). More precisely in our first example the dominant
interaction is modelled by

Hint± ∝ SαJβ ± Sγ Jδ, α 	= γ, β 	= δ, (78)

where the Ji operators are associated with a doubly degenerate vibrational ε mode [49, 50].
This kind of interaction appears in several E ⊗ ε Jahn–Teller systems [63–65] and the values
for the indices α, β, . . . , depend on the specific molecule under consideration. The H0 term
is usually taken as the oscillator Hamiltonian H0 = h̄ω(N + 1) but could be more generally
an operator valued function of the total number operator N or of J 2 = (N/2)(N/2 + 1).

For arbitrary value of α, γ (α 	= γ ) and β, δ (β 	= δ), we can define

Ŝ± = Sα ± iSγ , Ĵ± = Jβ ± iJδ,

Ŝz = εαγ θSθ , Ĵ z = εβδτ Jτ ,
(79)

which satisfy the usual su(2) commutation rules [Ŵz, Ŵ±] = ±Ŵ±, [Ŵ+, Ŵ−] = 2Ŵz and
Ŵ 2 = W 2 (Ŵ = Ŝ or Ĵ ). The normal standard basis is replaced by (w = 1/2 or j )

|ŵ,m〉 = PR|w,m〉,
Ŵz|ŵ,m〉 = m|ŵ,m〉, Ŵ 2|ŵ,m〉 = w(w + 1)|ŵ,m〉, (80)

where PR are rotation operators which perform the changes (x, y, z) → (α, γ, θ) and
(x, y, z) → (β, δ, τ ). These are given in appendix A.

With (79) the interaction terms (78) are written as

Hint+ ∝ 1
2 (̂S+Ĵ− + Ŝ−Ĵ +) = 1

2O, Hint− ∝ 1
2 (̂S+Ĵ + + Ŝ−Ĵ−) = 1

2O, (81)

which is in the form of equation (9). Thus for our Hamiltonian models

H±/h̄ = ω(N + 1) + 2g(SαJβ ± Sγ Jδ), (82)

(g ∈ R) all results of section 2 apply directly. With notation similar to that of table 1 in which
the substitutions S± → Ŝ±, Sz → Ŝz, J± → Ĵ± and Jz → Ĵ z are made, we have

H+/h̄ = ω(N + 1) + g
√
F(M̂+ + M̂−),

H−/h̄ = ω(N + 1) + g
√
F(N̂+ + N̂−),

(83)

which is equation (12) with δz = 0. After the unitary transformation U we have
(equations (15), (16))

U(H+/h̄)U−1 = H̃ +/h̄ = ω(N + 1) + 2g
√
F Ŝz,

U(H−/h̄)U−1 = H̃−/h̄ = ω(N + 1) + 2g
√
F Ŝz,

(84)
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with eigenvalues (j = n/2,m : −j, . . . , j − 1)

E(j,m,±) = h̄{ω(2j + 1) ± g[(j − m)(j + m + 1)]1/2}, (85)

respectively, in the bases

|ĵ, m〉|̂+〉, | ̂j,m + 1〉|−̂〉 for H̃ +,

| ̂j,m + 1〉|̂+〉, |ĵ, m〉|−̂〉 for H̃−,
(86)

where |±̂〉 = | ̂1/2,±1/2〉 is the electronic basis.
The uncoupled states are |ĵ,±j 〉|±̂〉 for H̃ + (resp. |ĵ,∓j 〉|±̂〉 for H̃−) and they are

eigenstates of H+ (resp. H−) with the same eigenvalue E = h̄ω(2j + 1).
With equations (19)–(21) the vibronic eigenstates of H± associated with the

eigenvalues (85) have the simple form

H+ H−

|+�̃+〉 = 1√
2
[|ĵ, m〉|̂+〉 + | ̂j,m + 1〉|−̂〉], |−�̃+〉 = 1√

2
[| ̂j,m + 1〉|̂+〉 + |ĵ, m〉|−̂〉]

|+�̃−〉 = 1√
2
[| ̂j,m + 1〉|−̂〉 − |ĵ, m〉|̂+〉], |−�̃−〉 = 1√

2
[|ĵ, m〉|−̂〉 − | ̂j,m + 1〉|̂+〉].

(87)

They can be further expressed in terms of the initial basis with (80) and the results in the
appendix for specific values of (α, γ, θ) and (β, δ, τ ).

We note that each eigenstate is still doubly degenerate E(j,m,±) = E(j,−m − 1,±).
This comes from an initial degeneracy of four of the eigenvalues of the operators F and F
(and 2j + 1 for those of H0). This remaining degeneracy could be raised by the introduction
in the Hamiltonian expansion of a term (equations (23), (33))

ω0Sθ + λzJτ = ω0Ŝz + λzĴ z = ω0Ŝz + λz

{
(� − Ŝz) in H+,

(� + Ŝz) in H−,

with λz 	= 0 in order to raise the degeneracy and the models would be equivalent (at least for
H+) to a one-photon two-mode Raman coupled model (section 3.2.1). However, all these terms
are precluded by symmetry and by the time reversal invariance of the vibronic Hamiltonian
[63, 66]. More interesting is the introduction of the allowed operator SθJτ = ŜzĴ z, which
can be associated with an effective pseudo-spin-vibration interaction [65]. The additional
interaction term can be written as

λzŜzĴ z =
{−λz/4 + λz�Ŝz in H+

+λz/4 + λz�Ŝz in H−.
(88)

Thus the vibronic Hamiltonians (83) become

H ′
+/h̄ = ω(N + 1) − λz/4 + g

√
F(M̂+ + M̂−) + λz�Ŝz

H ′
−/h̄ = ω(N + 1) + λz/4 + g

√
F(N̂+ + N̂−) + λz�Ŝz,

(89)

which is in the form of equation (26) for H ′
+ ((35) for H ′

−) with δz(�) = h̄λz� (δz(�) = h̄λz�).
With equations (36), (38) we obtain

U(H ′
+/h̄)U−1 = ω(N + 1) − λz/4 + 2�(F,�)̂Sz,

U(H ′
−/h̄)U−1 = ω(N + 1) + λz/4 + 2�(F,�)̂Sz,

(90)

with

�(F,�) = [g2F + λ2
z�

2/4
]1/2

, �(F,�) = [g2F + λ2
z�

2
/4
]1/2

,
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and the corresponding eigenvalues

±E′(j,m,±) = h̄ω(2j + 1) ∓ h̄λz/4 ± h̄

[
g2(j − m)(j + m + 1) +

λ2
z

4

(
m +

1

2

)2
]1/2

,

(91)

associated with the same states than in equation (86). The eigenstates of H ′
± are obtained with

the unitary transformations (equations (17), (18)),
+U−1 = exp[−(ξM+ − ξ †M−)], −U−1 = exp[−(ξ̄N+ − ξ̄ †N−)], (92)

acting on these same states. Setting g = |g| eiϕ (ϕ = 0 or π ) we have

ξ = |ξ | eiϕ, tan |ξ | =
[
�(F,�) − λz�/2

�(F,�) + λz�/2

]1/2

,

and ξ̄ with the substitutions � → � and � → �. Explicitly this gives:

• For H ′
+

|+�̃+〉 = +U−1|ĵ, m〉|̂+〉 = cos θ(j,m)|ĵ, m〉|̂+〉 + e−iϕ sin θ(j,m)| ̂j,m + 1〉|−̂〉,
|+�̃−〉 = +U−1| ̂j,m + 1〉|−̂〉 = cos θ(j,m)| ̂j,m + 1〉|−̂〉 − eiϕ sin θ(j,m)|ĵ, m〉|̂+〉.

(93)

• For H ′
−

|−�̃+〉 = −U−1| ̂j,m + 1〉|̂+〉 = cos θ(j,m)| ̂j,m + 1〉|̂+〉 + e−iϕ sin θ(j,m)|ĵ, m〉|−̂〉,
|−�̃−〉 = −U−1|ĵ, m〉|−̂〉 = cos θ(j,m)|ĵ, m〉|−̂〉 − eiϕ sin θ(j,m)| ̂j,m + 1〉|̂+〉,

(94)

with

cos θ(j,m) =
[
�(j,m) + λz�(j,m)/2

2�(j,m)

]1/2

,

sin θ(j,m) =
[
�(j,m) − λz�(j,m)/2

2�(j,m)

]1/2

,

�(j,m) = [g2(j − m)(j + m + 1) + λ2
z(m + 1/2)2/4

]1/2
,

�(j,m) = (m + 1/2).

(95)

As for H±, the expression of the eigenstates in the initial bases are obtained with (80) and the
results in the appendix. We will not discuss here the additional step required for the obtention
of vibronic eigenstates symmetrized in the molecular point group G.

As an aside we note that in the special case where g = λz/2 in H ′
+ it reduces to

H ′′
+ /h̄ = ω(N + 1) + λz

�̂S · �̂J = ω(N + 1) +
λz

2
[( �̂S + �̂J )2 − �̂J 2 − 3/4], (96)

the eigensolutions of which are well known:

+E(j ′, j) = h̄

{
ω(2j + 1) +

λz

2
[j ′(j ′ + 1) − j (j + 1) − 3/4]

}
, j ′ = j ± 1/2,

| ̂j, 1/2; j ′m′〉 =
∑
m,me

C
m me (j ′)
(j 1

2 ) m′ |ĵ, m〉|1̂/2,me〉. (97)
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| ̂j, 1/2; j ′m′〉 is the coupled basis associated with �̂J ′ = �̂S + �̂J and the C coefficients are the
usual su(2) Clebsch–Gordan coefficients [67]. Each energy level has a degeneracy of 2j ′ + 1.
It can easily be checked that, when g = λz/2, the eigenvalues in (91) reduce to those in (97).
Also from (91), (93), (95) the correlation between eigenstates reads

for λz > 0 |+̃�+〉 ≡ ∣∣ ̂j, 1
2 ; j + 1

2m′〉, |+̃�−〉 ≡ ∣∣ ̂j, 1
2 ; j − 1

2m′〉,
for λz < 0 |+̃�+〉 ≡ ∣∣ ̂j, 1

2 ; j − 1
2m′〉, |+̃�−〉 ≡ ∣∣ ̂j, 1

2 ; j + 1
2m′〉;

in other words, in this case (g = λz/2),

cos θ(j,m) =
[
j + m + 1

2j + 1

] 1
2

= C
m 1

2 (j + 1
2 )

(j 1
2 ) m + 1

2

= C
m + 1 − 1

2 (j − 1
2 )

(j 1
2 ) m + 1

2

,

sin θ(j,m) =
[

j − m

2j + 1

] 1
2

= C
m + 1 − 1

2 (j + 1
2 )

(j 1
2 ) m + 1

2

= −C
m 1

2 (j − 1
2 )

(j 1
2 ) m + 1

2

.

4. Further extensions

In section 2 we assumed A operators involving powers in one of the ladder operator of A.
However, there are circumstances in which pseudo-spin interactions S+A+S−A† involve more
general A operators for which equations (2),(5)–(7) are valid. The main step is thus to solve the
eigenvalue equation for F (2). Next solvable models can be built with appropriate additional
terms corresponding to H0 + H ′ in equations (26), (35).

We illustrate these situations below through two examples—one in which no
diagonalization of the F operator is required; the other, and more interesting, in which F
is a function in the generators of a new algebra B.

4.1. Non-degenerate two-mode multiquanta JCM

We consider the Hamiltonian models with p1 	= p2:

H/h̄ = ω1a
+
1 a1 + ω2a

+
2 a2 + ω0Sz + Hint/h̄,

Hint/h̄ =
{

g
[
ρ(N1, N2)a

+p2
2 a

p1
1 S+ + a

+p1
1 a

p2
2 ρ(N1, N2)S−

]
case (a),

g
[
ρ(N1, N2)a

p1
1 a

p2
2 S+ + a

+p1
1 a

+p2
2 ρ(N1, N2)S−

]
case (b).

(98)

They can be seen as generalizations of those considered in sections 3.2.1; to simplify we omit
the equivalent of the Stark shift terms of equation (47). They are also effective Hamiltonians
for cavity QED with cold trapped ions [68, 69] when the trapping potential is modelled by
a two-dimensional harmonic oscillator and the electromagnetic field treated classically. The
boson operators are then associated with the quantized vibrational motion of the ion and pi

is the number of quanta in mode i. The appropriate model (a) or (b) is determined by the
tuning of the laser frequency to a specific vibrational sideband [69]. Model (b) has been used
recently [70] to investigate the influence of the intrinsic decoherence on non-classical effects.

As p1 	= p2 Hint is no longer a function of the su(2) (resp. su(1, 1)) generators and
[H,N1 + N2] 	= 0 (resp. [H,N1 − N2] 	= 0). However, since we have, from equation (2),

F = ( 1
2 + Sz

)
ρ2(N1, N2)(N1 + p1)

p
1N

p
2

2 case (a)

+
(

1
2 − Sz

)
ρ2(N1 − p1, N2 + p2)N

p
1

1 (N2 + p2)
p

2 ,

F = ( 1
2 + Sz

)
ρ2(N1, N2)(N1 + p1)

p
1(N2 + p2)

p
2 case (b)

+
(

1
2 − Sz

)
ρ2(N1 − p1, N2 − p2)N

p
1

1 N
p

2
2 ,

(99)
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the degenerate states of F are

|�+〉 |�−〉
|[n0]jm〉|+〉 ≡ |n1, n2 + p2〉|+〉, |[n′0]j ′m′〉|−〉 ≡ |n1 + p1, n2〉|−〉 case (a),

|km〉|+〉 ≡ |n1, n2〉|+〉, |k′m′〉|−〉 ≡ |n1 + p1, n2 + p2〉|−〉 case (b),
(100)

the form of which (equations (51), (57)) shows clearly the broken su(2) and su(1, 1)

symmetries for cases (a) and (b), respectively. The associated eigenvalues f (n1, n2) are

f (n1, n2) = (n1 + p1)!(n2 + p2)!

n1!n2!
×
{
ρ2(n1, n2 + p2) case (a),
ρ2(n1, n2) case (b).

(101)

Also it is easily checked that the two commuting operators2,

�1 = N1 + p1
(

1
2 + Sz

)
�2 = N2 + p2

(
1
2 − Sz

)
case (a),

�1 = N1 + p1
(

1
2 + Sz

)
�2 = N2 + p2

(
1
2 + Sz

)
case (b),

(102)

commute with the su(2)(P ) generators as defined in (6) and satisfy in both cases

�i |�±〉 = (ni + pi)|�±〉 i = 1, 2. (103)

Thus the Hamiltonians (98) can be written in a form similar to (26)

H/h̄ = ω1(�1 − p1/2) + ω2(�2 − p2/2) + δzPz + g
√
F(P+ + P−),

with the detuning parameters δz = ω0 −p1ω1 + p2ω2 (resp. δz = ω0 −p1ω1 −p2ω2 ) for case
(a) (resp. for case (b)) and where H ′ = ω1(�1 − p1/2) + ω2(�2 − p2/2) is invariant under
any su(2)(P ) transformation. Thus H̃ /h̄ = H ′ + 2�(F)Sz with �(F) = [g2F + δ2

z

/
4
]1/2

.
The eigenstates of H are obtained directly from equations (17)–(20). The equivalent of the
null dressed states are given below together with the corresponding eigenvalues:

|n1, n2〉|+〉 n2 = 0, 1, . . . , p2 − 1 E+ = h̄[ω1n1 + ω2n2 + ω0/2] case (a),
|n1, n2〉|−〉 n1 = 0, 1, . . . , p1 − 1 E− = h̄[ω1n1 + ω2n2 − ω0/2] case (a),
|n1, n2〉|−〉 n1 = 0, 1, . . . , p1 − 1 E− = h̄[ω1n1 + ω2n2 − ω0/2] case (b).

n2 = 0, 1, . . . , p2 − 1

We think that these results should allow a notable simplification of the calculations developed
in [70] since the field coherent states can easily be expressed in the eigenbasis |�̃n1n2±〉 of H.

4.2. Two-channel Raman model

This cavity QED model introduced in [71] is of the same non-degenerate type as the one
considered in section 3.2.1 (case (a)) but has a classical pump field. The effective Hamiltonian
reads

H = E31
(
a+

1 a1 − a+
2 a2 + Sz

)
+
(
ηa1 + ξa+

2

)
S+ +
(
ηa+

1 + ξa2
)
S−, (104)

where the indices i = 1, 2 refer to the anti-Stokes and Stokes fields, respectively; E31 is the
energy gap between levels one and three with the Raman two-photon resonance condition
ω1 − ωP = ωP − ω2 = E31. The parameters η and ξ characterize the atom–field couplings.
The problem has been considered in [71] with the assumption of equal couplings; we treat
here the actual situation in which η 	= ξ .

In (104) the field operators span an A = h4(1) ⊕ h4(2) algebra but the F operator,

F = [(ηa1 + ξa+
2

)
S+ +
(
ηa+

1 + ξa2
)
S−
]2

,

= (η2 − ξ 2)(N1 − N2)/2 + (η2 + ξ 2)(N1 + N2 + 1)/2 + ηξ
(
a1a2 + a+

1 a+
2

)
+ (η2 − ξ 2)Sz,

(105)

2 �2 for case (a) is in fact of type �.
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is a linear combination in the generators of a su(1, 1) algebra in a two-boson realization. Since
N1 − N2 commutes with all su(1, 1) generators a unitary transformation V [19, 20] of the
field operators gives

VFV −1 =
{

(η2 − ξ 2)
(
N1 + 1

2 + Sz

)
η2 > ξ 2,

(ξ 2 − η2)
(
N2 + 1

2 − Sz

)
η2 < ξ 2,

(106)

where V is the two-mode squeeze operator

V = exp[f0(K− − K+)] = exp
[
f0
(
a1a2 − a+

1 a+
2

)]
, (107)

with tanh f0 = ξ 2/η2 (resp. tanh f0 = η2/ξ 2) for η2 > ξ 2 (resp. η2 < ξ 2). The degenerate
states of associated with the eigenvalue f (n1, n2) of F are as follows.

• For η2 > ξ 2, f (n1, n2) = (η2 − ξ 2)(n1 + 1)

|�±〉 = |n̂1, n2〉|±〉 =
{
V −1|n1, n2〉|+〉
V −1|n1 + 1, n2〉|−〉. (108)

• For η2 < ξ 2, f (n1, n2) = (ξ 2 − η2)(n2 + 1)

|�±〉 = |n̂1, n2〉|±〉 =
{
V −1|n1, n2 + 1〉|+〉
V −1|n1, n2〉|−〉. (109)

Since we have

H = E31
(
a+

1 a1 − a+
2 a2 + Sz

)
+

√
F(P+ + P−) = E31� +

√
F(P+ + P−), (110)

where � commutes with the su(2)(P ) generators as well as with the V transformation we are
left with a standard problem as in equation (26) with δz = 0, δ = 1 and with undressed states
as given in equations (108), (109). Straightforward application of the results in section 2 gives

En1n2± = E31
(
n1 − n2 + 1

2

)± (η2 − ξ 2)1/2(n1 + 1)1/2 η2 > ξ 2,

En1n2± = E31
(
n1 − n2 − 1

2

)± (ξ 2 − η2)1/2(n2 + 1)1/2 η2 < ξ 2,
(111)

and the eigenstates of H

|�̃±〉 = U−1|n̂1, n2〉|±〉, (112)

with (equation (21))

U−1 = exp
[
−π

4
(P+ − P−)

]
= (I − P+) exp[ln(2)Pz](I + P−).

We note that disentangling the V operator in equation (107) allows us to determine the
equivalent field mode operators V aiV

−1, V a+
i V −1 and thus V HV −1. This shows clearly that

this transformation performs a complete decoupling of the Stokes and anti-Stokes fields. We
find

V HV −1 = E31(N1 − N2 + Sz) + (η2 − ξ 2)1/2
(
a1S+ + a+

1 S−
)

η2 > ξ 2,

= E31(N1 − N2 + Sz) + (ξ 2 − η2)1/2(a+
2 S+ + a2S−

)
η2 < ξ 2, (113)

which is a standard one-mode JCM on the anti-Stokes field (i = 1) when η2 > ξ 2 and the
equivalent of the counter-rotating terms of a one-mode JCM on the Stokes field (i = 2) when
η2 < ξ 2.

The case η = ξ considered in [71] gives

F = ξ 2[2Kz + K+ + K−] = 2ξ 2[Kz + Kx] (114)

and the V transformation cannot be determined. It has been shown [72, 73] that this
corresponds to unnormalizable eigenstates in the sense 〈�|�〉 < ∞ but that can be normalized
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by the delta function [74]. It is interesting to note that the linear vibronic interaction term in
E ⊗ ε Jahn–Teller systems [63, 66] is of the same form as in (104) when η = ξ and thus the F
operator is also given by (114). The impossibility to find exact analytical solutions comes for
the zeroth-order term which for this system is that of a two-dimensional isotropic harmonic
oscillator H0 = h̄ω

(
a+

1 a1 + a+
2 a2 + 1

) = 2h̄ωKz.
It may be verified that the technique used in this section gives an alternative to solve the

modified two-mode JCM of section 3.3; in this case F is a function in the generators of an
su(2) algebra. However, it is less convenient for a generalization to a p-mode case.

5. Conclusion

In this paper we showed that solvable quantum models involving pseudo-spin interactions
may be built from general assumptions concerning the preponderant interaction term. The
algebraic structure of this term leads to a hermitian operator F , the form of which determines
next the additional terms which may appear in the Hamiltonian expansion. We mainly dealt
with three algebras which occur frequently in quantum physics but others could be considered.
Other solvable Hamiltonian models, containing up to seven significant parameters, in the areas
of rovibrational and rovibronic spectroscopy will be presented elsewhere. In these cases our
approach allows, in addition, a straightforward determination of symmetry adapted eigenstates.

Appendix

We gather below some relations useful when dealing with transformations of the su(2) algebra.

A.1. Equivalent elementary operators

We consider transformations of the form

U = exp(iθZ) = exp
{
iθ
[
f1a

+
1 a1 + f2a

+
2 a2 + f+a

+
1 a2 + f−a+

2 a1
]}

, (A.1)

for a Schwinger realization (48), (49) of a u2 algebra. Since N = N1 + N2 commute with the
su(2) generators we may also write (A.1)

U = exp[iθ(f1 + f2)N/2] exp
{
iθ
[
(f1 − f2)

(
a+

1 a1 − a+
2 a2
)/

2 + f+a
+
1 a2 + f−a+

2 a1
]}

. (A.2)

The similarity transformation of an element X writes

X̃(θ) = UXU−1 = exp(iθZ)X exp(−iθZ), (A.3)

and differentiation with respect to θ leads to
d

dθ
X̃(θ) = −i[X̃, Z] = −i[X̃, Z]. (A.4)

In particular, when X is an elementary boson operator ai or a+
i (i = 1, 2) integration of

equation (A.4) gives, setting θ = 1 and t = [(f1 − f2)
2 + 4f+f−]1/2,

ã1 = exp[−i(f1 + f2)/2]

{
cos

(
t

2

)
a1 − i(f1 − f2)

t
sin

(
t

2

)
a1 − 2if+

t
sin

(
t

2

)
a2

}
,

ã+
1 = exp[i(f1 + f2)/2]

{
cos

(
t

2

)
a+

1 +
i(f1 − f2)

t
sin

(
t

2

)
a+

1 +
2if−

t
sin

(
t

2

)
a+

2

}
.

(A.5)

ã2 and ã+
2 are obtained from (A.5) with the interchange 1 ↔ 2 and f+ ↔ f−. From these

transformation laws those for the su(2) generators (48) can be deduced. A similar procedure
can be used for the other algebras considered in this paper in their various bosonic realizations.
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Table A.1. PR operators (equations (79), (80)).

(µ, ν, κ) εµ,ν,κ λ �� PR

x, y, z 1 1 (0, 0, 0) I

y, x, z − 1 0 (1, 1, 0)/
√

2 exp
[
3i π

4 Jz

]
exp[iπJy ] exp

[
i π

4 Jz

]
y, z, x 1 1/2 (−1,−1, −1)/2 exp

[
i π

2 Jy

]
exp
[
i π

2 Jz

]
z, y, x − 1 1/

√
2 (0, 1, 0)/

√
2 exp

[
i π

2 Jy

]
z, x, y 1 1/2 (1, 1, 1)/2 exp

[
i π

2 Jz

]
exp
[
i π

2 Jy

]
x, z, y − 1 1/

√
2 (−1, 0, 0)/

√
2 exp

[− i π
2 Jz

]
exp
[
i π

2 Jy

]
exp
[
i π

2 Jz

]

A.2. Euler–Rodrigues parameters

As discussed in [75–77], the Euler–Rodrigues parameters (λ, ��) present advantages over the
more traditional Euler angles for the parametrization of an element of the group SO(3). For
a rotation R(ϕ, �n) of angle ϕ (0 � ϕ � π) and axis �n, they are defined by

λ = cos
ϕ

2
, �� = sin

ϕ

2
�n, (A.6)

and the inverse rotation is R−1(ϕ, �n) = R(ϕ,−�n). In the passive point of view the associated
operator is

PR = exp(iϕ�n · �J ) = exp[iϕ(nxJx + nyJy + nzJz)]

= exp[iϕ(n−J+ + n+J− + nzJz)] (A.7)

with n± = (nx ± iny)/2. Using the su(2) disentangling formula [19] the PR operator is
rewritten as

PR = exp(g+(ϕ)J+) exp(gz(ϕ)Jz) exp(g−(ϕ)J−), (A.8)

which gives

g+(ϕ) = i
�x − i�y

λ − i�z

, g−(ϕ) = i
�x + i�y

λ − i�z

, gz(ϕ) = ln[λ − i�z]
−2. (A.9)

The transformation laws of the standard su(2) irreducible bases {|jm〉} under the action of PR

operators is

PR|jm〉 = |̂jm〉 =
∑
m′

D(j)∗
mm′ (ρ, τ )|jm′〉, (A.10)

where the rotation matrices are those in [75] expressed in terms of the complex quaternion
parameters ρ = λ − i�z, τ = �x + i�y .

A.3. Rotation operators for various reference configurations

We give in table A.1 the unitary operators PR associated with a change of quantization axis
from the standard (x, y, z) configuration to an arbitrary (µ, ν, κ) one (equations (79), (80)).
With equations (A.10) they allow the determination of the eigenstates (87), (93), (94) in terms
of the standard initial basis |jm〉|±〉. They are also given in a form with which the transformed
of the su(2) generators are easily obtained.
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[33] Bužek V and Jex I 1990 Opt. Commun. 78 425–35
[34] Joshi A and Puri R R 1992 Phys. Rev. A 45 5056–60
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